7. The mechanism for acetylcholine receptor inhibition by α-neurotoxins and species-specific resistance to α-bungarotoxin revealed by NMR

Abraham O Samson, Tali Scherf, Miriam Eisenstein, Jordan H Chill and Jacob Anglister

INTRODUCTION

α-Bungarotoxin (\(\alpha\)-BTX) is a 74 amino acid, α-neurotoxin derived from the venom of the snake Bungarus multicinctus. It binds to the postsynaptic muscle acetylcholine receptor (AChR) with a K_D of 10^{-11} M,\(^1\) competitively inhibiting ACh binding, thereby preventing the depolarization of postsynaptic membranes and blocking neuromuscular transmission. Using dynamic filtering techniques, the major determinant involved in toxin binding was mapped to the segment $^{1\text{a}}$W184-$^{1\text{a}}$D200 which forms a β-hairpin\(^2\) (α-BTX and AChR residues are designated by a superscript B (\(/B\)) or α1, α7, β or δ (i.e. α^1X) respectively, before the one-letter amino acid code indicating the subunit type and the position in the sequence). The dissociation constant of α-BTX for a $\alpha^{1\text{a}}$184-200 peptide is 2.5×10^{-7} M, two orders of magnitude higher than that for the $\alpha^{1\text{a}}$183-196 peptide, emphasizing the importance of the N-terminal residues $^{1\text{a}}$P197-$^{1\text{a}}$D200 for binding.

The structure of the entire AChR has not been solved at high resolution. Recently, Brejc et al.\(^3\) determined the crystal structure of a snail ACh-binding protein (AChBP) which shares up to 30\% sequence identity with AChRs. Superposition of the toxin-bound high-affinity peptide (HAP) on the analogous region of the AChBP located the binding site for α-neurotoxins at the outer perimeter of the AChBP at the interface between two identical subunits.\(^4\) The molecular axis of the toxin was found to be perpendicular both to the five-fold symmetry axis and to the tangent to the pentameric ring (the molecular axis of α-BTX is defined here as the long axis of the second finger). Due to the perpendicular orientation, the contact area between the toxin and the receptor is only 760 Å^2, not accounting for the extremely high affinity between the two proteins. Moreover, the superposition used resulted in numerous Van der Waals violations between the toxin and the homopentameric AChBP that could potentially be relieved by elaborate modeling. The Van der Waals violations prevented detailed analysis of the interactions between α-BTX and the heteropentameric muscle-AChR, and the interactions between the two proteins could be inferred only by analogy to the AChBP.

In the present study, we determined the solution structure of a complex between α-BTX and a peptide corresponding to the segment $^{1\text{a}}$R182-$^{1\text{a}}$I202 containing the entire major ligand-binding domain of Torpedo α1, including all residues previously found to be important for species-specific resistance to α-BTX. Using our NMR structure of α-BTX/α1\(^{182-202}\) complex we constructed the first homology-based model of the extracellular domain of the muscle-AChR, AChR-EC, in complex with two toxin molecules. In this model α-BTX forms an angle of approximately 35$^\circ$ with the plane of the pentameric ring and a 37$^\circ$ angle with the tangent to the ring. This orientation considerably increases the contact area between AChR and α-BTX. According to our model, $>1800 \text{Å}^2$ of the toxin surface are buried upon receptor binding, compared with a mere 760 Å^2 in the AChBP superposition,\(^4\) clearly in line with the high affinity to the receptor. The
conserved α-neurotoxin residue R36 occupies the partially buried deep pocket for ACh, thus providing a novel explanation for the mechanism of AChR inhibition by snake α-neurotoxins.

The overall structure of the complex is well defined with r.m.s.d values of 0.84 Å and 1.45 Å for the backbone and heavy atoms respectively.

STRUCTURE OF THE BOUND α-BTX

As shown in Fig. 7.1B the overall structure of α-BTX consists of three long fingers and a C-terminal tail. Finger I forms a β-hairpin with two anti-parallel β-strands consisting of residues V2-T6 and I11-T15. Finger II consists of two anti-parallel β-strands, L22-D30 and G37-A45. Residues E56-C60 of finger III form a triple-stranded anti-parallel β-sheet with finger II to create the central core of the toxin. These motifs are present in many α-neurotoxins.

The secondary structure of free α-BTX was determined earlier. In the α-BTX complex with AChR, residues W28 and V39 located at the edge of β-sheet of the second finger zip together upon peptide binding. In the present study of α-BTX in complex with AChR, the overall structure of the complex is well defined with r.m.s.d values of 0.84 Å and 1.45 Å for the backbone and heavy atoms respectively.

STRUCTURE DETERMINATION OF α-BTX/AChR COMPLEX

The structure determination was based on a total of 1673 NMR distance constraints. Of these constraints 522 were long range and included 375 intra-toxin, 104 peptide/toxin, and 43 intra-peptide constraints. Torsion angle constraints included 77 φ-angles and 41 χ1-angles. Structure calculations were performed with the CNS program using the NMR-derived distance and dihedral angle constraints. Fig. 7.1A shows the backbone superposition of 28 lowest energy structures.

Figure 7.1 Stereo view of the α-BTX/AChR complex (colored in dark and light gray, respectively).

Only the peptide segment W184-D200, which exhibits a converged structure, is shown. N and C denote the termini of the toxin and the peptide and each tenth residue is numbered. (A) Backbone superposition of 28 lowest energy structures. (B) A ribbon diagram of the energy-minimized average structure. All figures were prepared using Insight II and MOLMOL.
with the longer $\alpha_{1182-202}$, additional residues, namely $\beta_{C29-D30}$ and $\beta_{G37-K38}$, extend the β-sheet, illustrating the importance of $\alpha_{1P197-D200}$ in stabilizing the complex.

STRUCTURE OF THE BOUND $\alpha_{1182-202}$

As already revealed in the secondary structure determination of the bound peptide, $\alpha_{1182-202}$ adopts a β-hairpin conformation, consisting of two anti-parallel β-strands formed by residues $\alpha_{1H186-T191}$ and $\beta_{Y198-D200}$ (Fig. 7.2A) and a six-residue connecting loop made of $\alpha_{1C192-P197}$ (CCPDP) rigidified by the disulfide bond and two prolines. The first three residues of the elongated β-strand $\alpha_{1H186-T191}$ interact with the second β-strand of $\alpha_{1182-202}$, $\alpha_{1Y198-D200}$, thus closing the β-hairpin, while the last three residues of the first strand, namely $\alpha_{1Y189-T191}$, associate with the toxin residues $\beta_{K38-V40}$, to form an intermolecular β-sheet (Fig. 7.2A). The upper face of the β-hairpin is formed by the side-chains of residues α_{1K185}, α_{1W187}, α_{1Y189}, α_{1P194}, α_{1P197}, and α_{1L199}, while the lower face is formed by the side-chains of α_{1H186}, α_{1V188}, α_{1Y190}, α_{1C192}, α_{1C193}, α_{1Y198}, and α_{1D200}, thus stabilizing the β-hairpin conformation through mostly hydrophobic interaction (Fig. 7.2A).

Figure 7.2 The structure and interactions of the α-BTX-bound $\alpha_{1182-202}$.

(A) Stereo representation of the hydrogen bonding and intramolecular side-chain interactions of the bound $\alpha_{1182-202}$. Intramolecular hydrogen bonds within the peptide, and intramolecular hydrogen bonds with $\beta_{K38-V40}$ are in dotted lines. (B) Superimposition of the $\alpha_{1H186-D200}$ segment and the corresponding segment of AChBP (N181–D194). The backbone atoms of $\alpha_{1182-202}$ (light gray) and the corresponding AChBP segment (dark gray) are shown. (C) A stereo representation of side-chain interactions of $\alpha_{1182-202}$ with α-BTX. The peptide interacts with the first finger, second finger, and C-terminus of α-BTX residues denoted by a superscript B.
The corresponding region of AChBP (KKNSV-TYSCEPANYEDEYV, residues 179–194) was found to adopt a β-hairpin conformation, in which Ser186-Cys187 form a turn.3 Backbone superposition of the α-BTX bound AChR segments α1K185–α1Y190 and α1Y198–α1L199 over that of the corresponding AChBP region resulted in an rmsd of 1.4 Å (Fig. 7.2B), a deviation originating mostly from the one-residue insertion α1P194 in the AChR sequence. The two prolines (α1P194, α1P197) of α1182–202 break the β-structure and produce a β-bulge consisting of the segment α1P194–α1P197. The second β-strand in AChBP extends beyond its three-residue counterpart in α1182–202 (α1Y198–α1D200).

BINDING INTERACTIONS OF α1182–202 AND THE TOXIN

Surrounded by the toxin, α1182–202 fits snugly into the α-BTX binding site. As shown in Fig. 7.2C, 12 α1182–202 residues interact with 19 toxin residues. The side-chains of α1K185, α1W187, and α1Y189 interact through mostly hydrophobic interaction with residues βT6–βS12 of the first finger of α-BTX. Peptide residues α1Y189–α1T191 interact with residues βK38–βV40 of the toxin β-sheet core through an intermolecular β-sheet involving four hydrogen bonds (Fig. 7.2A). Hydrophobic interactions between α1Y189 and βV40 on the upper side of the β-hairpin and between α1Y190 and βY39 on the lower side of the β-hairpin help to stabilize the intermolecular β-sheet. The side-chains of tyrosines α1Y190 and α1Y198 on the lower side of the β-hairpin interact with βR36 of the toxin’s second finger, a highly conserved toxin residue found to be important for toxin binding to AChR (see below). Finally, residues α1Y189, α1T191, α1C192, and α1P194 interact through mostly hydrophobic interaction with residues βH68–βQ71 at the C-terminus of the toxin (Fig. 7.2C). Residues α1K185, α1W187, α1Y189, α1Y190, α1T191, α1C192, and α1P194 are the strongest contributors to the contact surface between α1182–202 and the toxin.

NMR-DERIVED MODEL OF THE AChR-EC/α-BTX COMPLEX

MODELING OF THE AChR-EC/α-BTX COMPLEX

The AChBP sequence was aligned with those of various AChR subunits using the Clustal W program.3 The sequence identity between AChBP and each AChR-EC subunit is only 19–24%.3 Nevertheless, the sequence alignment of the AChBP monomer and each of the AChR-EC subunits showed a good fit with almost no gaps over the entire sequence (Fig. 7.3A). The highest similarity was found in the secondary structure elements. The cysteine pair α1C128 and α1C142 is conserved in all AChR-EC subunits, while the vicinal α1C192 and α1C193 pair is conserved in α-subunits only.

The AChBP subunit consisting of 210 amino acids served as a template for our model. Each subunit of the AChR model was therefore delimited to this size and the following segments, α1(2–211), δ(2–225), γ(2–219), and β(2–217), corresponding to the 210-residue subunit of AChBP were modeled. Inserts in the δ-, γ-, and β-sequences increase the length of the respective subunit. Using the homology module of the Accelrys package, the residues in the structurally conserved regions of AChBP were replaced by those of AChR-EC, resulting in minor side-chain collisions, which were repaired by assigning suitable rotamers conformation. Random loops were generated for the segments connecting structurally conserved regions, producing few molecular Van der Waals violations, which were alleviated by manually assigning alternative rotamers to the side-chains of colliding residues.

To dock two α-BTX molecules into the AChR model, α1182–202 residues 185–190 and 198–199 from the NMR structure of the α-BTX/α1182–202 complex were superimposed on the corresponding residues in the AChR model, resulting in an rmsd of 1.4 Å. Residues α1185–α1200 of the α1 model were assigned with the cartesian coordinates of the corresponding α1182–202 segment of the complex.
and two α-BTX molecules were introduced in their peptide-bound state. Splice points which produced a discontinuity were fixed using molecular dynamics and energy minimization. The insertion of the entire α-BTX/α1182–202 complex automatically dictated the position of the toxin relative to the receptor, thus generating an NMR-derived model for the α-BTX/AChR-EC complex (Fig. 7.3B and C). The replacement of the β-hairpin in the initial AChR model with the β-hairpin of α1182–202 bound to α-BTX created a discontinuity at positions α1K185 and α1D200, which was resolved by a few steps of dynamics and minimization. The side-chain of βS34 in the two docked toxin molecules collided with the δ- and γ-subunits and its conformation was modified by molecular dynamics calculations applied only to residues βC33–βS35.

LIGAND-BINDING SITE OF AChR

According to our model, the ACh binding pocket, previously identified in the crystal structure of the homopentameric AChBP, is located at the interface between the α1γ- or α1δ-subunits and is lined by aromatic and hydrophobic residues: α1Y93, α1W149, α1Y190, and α1Y198 of the α1-subunit, as well as γW55, γW57 and γL119, γL121 of the γ- and δ-subunits. Different residues are found in the corresponding positions in the other subunits, accounting for the absence of ligand binding.
THE ION CHANNEL OF AChR

AChBP is a soluble protein found in the synaptic cleft, where it modulates synaptic transmission. It consists of five identical subunits arranged as a doughnut to form a central pore. This protein is not a cation channel and therefore does not require a negatively charged duct along its five-fold axis. Indeed, the electrostatic potential map of AChBP presents a slightly positively charged cavity on one side and a slightly negative cavity on the other side. On the other hand, the heteropentameric AChR forms a strongly negative duct, which measures 1–1.5 nm in radius, and 5 nm in height. Several residues lining the inner perimeter of the AChR channel duct are different from those of the AChBP. Uncharged amino acids of the AChBP are mutated to negatively charged ones (i.e. S79 to α1Dγ3E, S80 to α1B8D, S93 to α1Bγ3D) and positively charged to negative or neutral residues (i.e. H69 to α1Dγ3E/B3A, K94 to α1Dγ3Q/B3).

RELATIVE TOXIN ORIENTATION ON AChR

α-BTX forms an angle of approximately 35° with the plane of the pentameric ring of AChR and a 37° angle with the tangent to the ring (Fig. 7.3B and C). In contrast, the superimposed model of Harel et al. located α-BTX in the plane of the pentameric ring and perpendicular to the tangent to the AChBP ring. The different angular orientation of α-BTX in the AChR model dramatically increases its contact area with the receptor by a factor of ~2.5 (see below).

BINDING INTERFACE OF α-BTX AND AChR

Almost all the interactions of the α1-subunit with the toxin arise from residues α1K185–α1L199, the only exception being the interaction of α1W149 with R36. The first finger of the toxin interacts with the α1-subunit only. The long second finger of α-BTX penetrates deeply into the interface between the α1γ and the α1δ subunits and residues K26–E41 (R36 included) interact extensively with both subunits but mostly with the γ- and δ-subunits. The third finger interacts with the γ- and δ-subunits and the C-terminus of the toxin interacts only with the α1-subunit.

*R36 OCCUPIES ACETYLCHOLINE-BINDING POCKET

The most striking feature of the NMR-derived model of the AChR/α-BTX complex is the occupation of the ACh binding site by R36 (Fig. 7.4A and B). R36 mimics ACh (Fig. 7.4C) thus occluding neurotransmitter binding. The majority of the receptor residues interacting with R36 are from

Figure 7.4 Interactions of α-BTX with AChR-EC in the NMR-derived model.

(A) Interactions of α-BTX R36 in the ACh binding pocket of AChR at the interface between the α1- and γ-subunits and (B) at the interface between the α1- and δ-subunits. (C) Structural comparison between ACh (right) and the arginine residue (left).
the α1-subunit. The positively charged guanidinium group of ³⁸R36 forms cation–π interactions with α¹W149, ³⁸W57 (³⁸W55 in the γ-subunit), and possibly with α¹Y93. In addition a hydrogen bond is formed between the guanido group of ³⁸R36 and the carbonyl oxygen of α¹W149. α¹Y190, α¹Y198, and α¹L121 (³³L119 in the γ-subunit) interact with the methylenes of the ³⁸R36 side-chain. α¹C192 and α¹C193 are close to the carbonyl group of ³⁸R36 and the methylene group of ³³G37. Notably, the orientation of ³⁸R36 in the AChR/α-BTX model is dictated by the interactions with α¹Y190 and α¹Y198 as observed by NMR and was not changed during the modeling process.

The NMR-derived model of the α-BTX/AChR complex is in remarkable agreement with pairwise interactions between AChR and the short α-neurotoxin Naja mossambica mossambica I (Nmml) revealed by double mutant cycle experiments. The Nmml R33 (homologous to ³⁸R36, see Fig. 7.5) was found to interact with ³³L119 and ³³W55, and a cation–π interaction between ³³W55 and the Nmml R33 was suggested. In addition, Nmml R33 was found to be coupled to α¹W149, α¹Y188, α¹Y190, α¹Y198, and α¹D200 of the α1-subunit. It was thus suggested that Nmml R33 is inserted between the α1- and γ-subunits and anchors the α-toxin to the surfaces of both subunits, exactly as observed for ³⁸R36 in our NMR-derived model of α-BTX complex with AChR (see Fig. 7.4A and B).

³⁸R36 IS INVARIANT IN SNAKE α-NEUROTOXINS

Sequence alignment of several long and short α-neurotoxins displayed a high sequence identity (35–65%) as well as five invariant cystine bridges (Fig. 7.5). The alignment revealed that the arginine at the tip of the second finger, ³⁸R36, and ³³G37 are invariant (Fig. 7.5). As mentioned earlier, ³⁸R36
occupies the ACh-binding site on the receptor, while the small and flexible G37 enables optimal fit of R36 in the ACh-binding pocket. These findings are in excellent agreement with mutagenesis studies that show that a mutation of R33 of Nmnl (homologous to R36, see Fig. 7.5) results in four orders of magnitude decrease in the affinity of the toxin to AChR. In addition to R36 and G37, residues W28 and P49 were the only invariant residues excluding the cysteines. Remarkably, W28 interacts extensively with the γ- and δ-subunits.

NMR STRUCTURE OF THE α-BTX COMPLEXED WITH α1182-202 ACCOUNTS FOR SPECIES-SPECIFIC SUSCEPTIBILITY TO THE TOXIN

Snake neurotoxins have evolved to paralyse the snake’s prey by inactivating muscle AChR and, therefore, both long and short α-neurotoxins exhibit high affinity to muscle AChR and its α1-subunit. In Fig. 7.6, sequences of the α1 of various species are presented together with their relative binding affinity to α-BTX. The natural prey of the snake Bungarus multicinctus are frogs and chicks, and it is therefore not surprising that α-BTX binds lethally and with the highest affinity to their α1. The Torpedo californica α1 sequence is similar to that of frogs, and therefore, exhibits similar affinities. On the other hand, snakes themselves and their predators such as the mongoose are naturally resistant to snake venom in general, and α-BTX in particular. Other species such as humans and hedgehogs, the latter being closely related to the mongoose, exhibit reduced sensitivity to α-BTX poisoning. Understanding the influence of a mutation on the actual binding is a powerful tool in relating α1 structure to its function.

The β-hairpin K185–D200 is the major α1-subunit determinant involved in both ACh and snake toxin binding, protruding out of the α1-subunit as a long tongue. While the upper and lower face of the β-hairpin and the backbone of the N-terminal β-strand (Y189–T191) are involved in toxin binding (see Fig. 7.2), only the lower face is involved directly in ACh binding. Resistance to snake toxins can therefore be obtained by mutating residues with side-chains pointing to the upper face while conserving those with side-chains pointing downwards and that are crucial for ACh binding. Fig. 7.6 indicates that mutations of residues K185, W187, Y189, P194, and P197 lead to a decrease or loss of toxin-binding capability. In snakes, resistance to α-neurotoxins is conferred by the K185W, W187S, Y189N, and P194L mutations while in mongoose resistance is obtained by W187N (putatively N-glycosylated), Y189T, P194L, and P197H mutations. Our structure indicates that the side-chains of residues K185, W187, Y189, and P194 point to the upper side of the β-hairpin and interact extensively with α-BTX. The aforementioned mutations obviate the favorable interactions with the toxin and abolish its binding. Fig. 7.6 also indicates that mutations of residues D195 and T196 do not significantly alter the AChR affinity to the toxin. In
susceptible species such as frogs, α1T196 is replaced by a lysine, whereas in cats α1D195 is replaced by threonine. Interestingly, T1 relaxation time in the rotating-frame (T1p) and rmsd values of residues α1D195 and α1T196 suggest that they are more flexible than other residues within the binding determinant (Samson et al, unpublished results). Our findings suggest that these residues are solvent-exposed in α1H186, α1V188, α1Y190, α1C192, α1C193, α1Y198, and α1D200, which form the lower face of the β-hairpin, are conserved. Four of these residues, namely, α1Y190, α1C192, α1C193, α1Y198, form the binding site for ACh and interact with B-R36, which mimics ACh.

CONCLUSION

The structure of the major acetylcholine receptor determinant in complex with α-BTX was solved using NMR spectroscopy. The AChR-peptide folds into a β-hairpin which associates with the α-BTX central β-sheet through hydrogen bonds and hydrophobic interactions. One face of the peptide β-hairpin, that is exposed to α-BTX, presents variable amino acids which confer toxin resistance to species such as mongoose and cobra. Residues on the other face of the β-hairpin are highly conserved in different animal species, because they are involved in acetylcholine binding. Based on this NMR structure, and on that of the AChBP, we constructed a model of the toxin-bound AChR. Remarkably, B-R36 at the second fingertip of the toxin occupies the receptor-binding site, thereby occluding ACh binding and preventing channel opening. This arginine is invariant in α-neurotoxins originating from different snake species. The channel duct formed in the center of the AChR pentameric ring is negatively charged to assist cation flux. The toxin molecules form an angle of 35° with the tangent of this ring, considerably increasing the contact area. This study provides a new explanation for the AChR inhibition by snake α-neurotoxins and sheds light on the ligand-binding pocket and channel duct at atomic resolution.

ACKNOWLEDGMENTS

We thank Mrs Aviva Kapitkovski and Mr Yehezikel Haik for synthesizing and purifying the AChR-peptides.

REFERENCES