PROTEIN FOLDING: A PARADIGM FOR SOLVING HARD PROBLEMS IN BIOLOGY

Michael Levitt
Structural Biology & Computer Science
Stanford

http://csb.stanford.edu/levitt
OUTLINE

- Simulation
 - Basic methods
 - Hydrophobic effect
 - Unfolding, folding

- Prediction
 - Special potentials
 - Minimization
 - Monte Carlo

- Hard Problems
INTRODUCTION
DNA of bacteria with 2,000 genes ≈ 2,000 proteins

- From DNA sequence, predict all protein structures
- From protein structures, predict all function
PROTEIN FOLDING IS CENTRAL

Sequence ➔ Structure ➔ Function

- Unfolded protein is a chain of amino acids
- Folded protein
- Function depends on protein shape

- Highly mobile
 - Inactive
- Almost unique shape
 - Precisely ordered
 - Stable
 - Active
- Specific associations
 - Precise reactions

©Michael Levitt 01
SIMULATION
TOTAL POTENTIAL ENERGY

\[U = \sum \frac{1}{2} K_b (b - b_0)^2 + \sum \frac{1}{2} K_\theta (\theta - \theta_0)^2 \]

All Bonds

All Angles

\[+ \sum K_\phi \left[1 - \cos(n\phi + \delta) \right] \]

All Torsion Angles

\[+ \sum \varepsilon \left[\left(\frac{r}{r_0} \right)^{12} - 2 \left(\frac{r}{r_0} \right)^6 \right] \]

All nonbonded pairs

\[+ \sum \frac{332 q_i q_j}{r} \]

All partial charges

ENCAD Parameters from 1979 (Lifson)
TOTAL POTENTIAL ENERGY. 2

- The total potential energy or enthalpy fully defines the system, \(U \).
- The forces are the gradients of the energy.
- The energy is a sum of independent terms for: Bonds, Bond angles, Torsion angles and non-bonded atom pairs.

\[F(x) = -\frac{dU}{dx} \]
MOLECULAR DYNAMICS THEORY

- Force = -dU/dx (slope of potential, U); acceleration, \(m \cdot a(t) = \text{Force} \).
- All atoms move together so force between atoms change with time.
- Analytical solution for \(x(t) \) and \(v(t) \) is impossible; numerical solution is trivial.

\[
\begin{align*}
 x(t + \Delta t) &= x(t) + v(t) \Delta t + \left[\frac{4a(t) - a(t - \Delta t)}{6} \right] \Delta t^2 / 6 \\
 v(t + \Delta t) &= v(t) + \left[\frac{2a(t + \Delta t) + 5a(t) - a(t - \Delta t)}{6} \right] \Delta t / 6

end{align*}
\]

- **Kinetic energy**
 \[U_{\text{kinetic}} = \frac{1}{2} \sum m_i \cdot v_i(t)^2 = \frac{1}{2} n \cdot k_B \cdot T \]

- Total energy \((U_{\text{potential}} + U_{\text{kinetic}})\) must not change with time.

©Michael Levitt 01
HYDROPHOBIC EFFECT
SIMULATING THE HYDROPHOBIC EFFECT

Tanya Raschke

- 1 nanosecond MD simulations in periodic water boxes with from 30mM to 3 Molar hydrocarbon solution. Encad with F3C water (1996).

- Measure cluster formation by Voronoi. \(d(AB) = d(BC), \) but only A, B touch.

Box with periodic boundaries.
MOVIE OF BENZENE MOLECULAR DYNAMICS IN WATER AT ROOM TEMPERATURE
HYDROPHOBIC ENERGY IS COOPERATIVE

\[\Delta G_N = -kT \log \left[\frac{C_N}{(C_{N-1} C_1)} \right] \]

- Assume clusters are close-packed spheres:
 \[V_N = NV_1 \]
 \[A_N = \alpha (V_N)^{2/3} = \beta (N)^{2/3} \]
 \[\Delta A_N = \beta [(N)^{2/3} - (N-1)^{2/3}] \]

- If \(\Delta G_N = \gamma \Delta A_N \), then
 \[\Delta G_N = \gamma \beta [(N)^{2/3} - (N-1)^{2/3}] \]

- Determine \(\gamma \) by fitting with \([(N)^{2/3} - (N-1)^{2/3}] \).
HYDROPHOBIC ENERGY DEPENDS ON BURIED SURFACE

Constant of proportionality matches experiment.
UNFOLD THE α-HELIX

13 Alanine residues

- Start as an ideal α-helix in a box of water.
- Run 200 ps (100,000 time steps) of molecular dynamics at six different temperatures.
- Record percentage α-helix formed for last 50 ps.
- See temperature-induced melting on picosecond time-scale.

Put it in a box of water.
\(\alpha\)-HELIX LESS STABLE IN WATER

- In vacuo the helix is very stable even at high temperature.
- In water the helix is unstable at high temperature.
- The rate of melting depends on temperature.
- Happens because water molecules stabilize the transition state.
WATER ALLOWS HYDROGEN BONDS TO BREAK

- Water catalyzes the breakage of hydrogen bonds by stabilizing the transition state.
SIMULATE FOLDING
Simulating folding is difficult?

- Simulation of 1 millisecond requires 10,000 CPU years!
- Must get over high barriers & many degrees of freedom.
MASSIVE COMPUTATIONAL RESOURCES

• Empty Supercomputers.
• Blue Gene (IBM).
• Folding@home (Vijay Pande).
FOLDING@HOME

Using Folding@home

• Project Goals: solving the protein folding problem
• How you can help
• Download (New! Version 1.33)
• How to install our software
• Frequently asked questions (FAQ)
• Contact Folding@home (Help Center)
• Folding@home discussion board

Fold proteins on 20,000 computers using the program as a Screen Saver!

http://www.stanford.edu/group/pandegroup/Cosm/

Join Folding@home by running our screen saver or client software

Like SETI@home

©Michael Levitt 01
PANDE MOVIE

α-HELIX FOLDING
50 YEARS OF SIMULATION

- We have 10,000,000 times more resources.
- Systems have become larger (100 times).
- Runs have become longer (100,000 times).
- Energy functions have become simpler.
- Fit reality well. Nothing bad has happened!

1955 Argon 1970 Water 1988 Protein in Water

©Michael Levitt 01
PREDICTION
WHAT DRIVES FOLDING?

- Protein is a chain.
- Self-avoiding and close packed.
- Residue preferences:
 - Inside/Outside
 - Specific Neighbors

Red are hydrophobic, like to be away from water
Green are hydrophilic, like contact with water

Hydrophobic Hydrophilic All Residues
Discrimination Paradigm
A PARADIGM FOR PREDICTING STRUCTURE

DECOYS
- Construct a large number of possible folded shapes (Decoys).

DISCRIMINATION
- Select the correct, native fold.

Need a good energy function
THE CASP EFFECT

- Critical Assessment of Structure Prediction.
- Predict what no one knows.
- Predict what is about to be known.
- Carefully control evaluation and assessment. Competition?
- Meet to discuss what went wrong and what went right.
- Have had CASP1 (‘94) through CASP4 (‘00).

HIEARCHICAL REDICTION
1998
Hierarchical Structure Prediction

Use a $\sqrt{3}$-state lattice model.

Use a 4-state off-lattice model.

Yu Xia Ram Samudrala

1 of 10,000 low-energy shapes.

David Hinds

Predicted secondary structure

Britt Park

Add all atoms in full detail.

©Michael Levitt 01
Hierarchical prediction does well

T46/adg 7.5 Å (49 residues; 66113)

* T56/dnab 6.8 Å (60 residues; 67126)

** T59/smd3 6.7 Å (46 residues; 3075)

** T61/hdea 7.4 Å (66 residues; 974)

SPECIAL POTENTIALS
2000
SAMPLING ANT LION TOWN POTENTIALS

Uniform Exhaustive Search

Random start Minimization or Monte Carlo
Energy Minimization
ALL-ATOM ENERGY MINIMIZATION

- Minimize all-atom energy with respect to all torsion angles.
- Augment the normal potential energy function with:
 - Cooperative hydrogen bonds.
 - Cooperative hydrophobic interactions.
 - Forced exposure of charges.

Chen Keasar
\[U = \sum K_{\phi} [1 - \cos(n\phi + \delta)] \]
\[+ \sum \varepsilon [(r_0/r)^2 - 2(r_0/r)] \]
\[+ \sum 332 q_i q_j / r \]

A protein with \(N \) residues has about
\(4N (\phi, \psi, \chi) \) single bond torsion
angles. The same protein has about
\(50N \) Cartesian coordinates \((x, y, z)\).
COOPERATIVE HYDROPHOBIC PACKING

- Cooperative hydrophobic compaction makes a good core.

Original Potential

Modified Potential
STRUCTURE PREDICTION BY MINIMIZATION

- Minimize special energy function with respect to torsion angles (ϕ, ψ, χ).
- Add energy terms for cooperative hydrogen bonds and hydrophobic compaction.

This method did well at CASP4, 2000.

10Å = 1 nm

Structure of T102

Best T102. RMS = 3.3Å
T102 Submitted. RMS = 5.0Å
COOPERATIVE HYDROGEN BONDS

- Cooperative hydrogen bonds give rise to good secondary structure.
All-β PREDICTION SUCCESS

• All-β sheet proteins are the hardest to predict.

• Torsion minimization does well on T114, an all β-protein.

Native Structure. Prediction is somewhat similar.
Segment Monte Carlo
MONTE CARLO METHODS

(a) At each step, attempt many moves.

(b) Accept the first move that obeys: Random number, \(R_n < \exp(-\Delta U/kT) \)

- Normal Monte Carlo:
 Make random moves and accept some of them (Metropolis).

- Simulated Annealing:
 Reduce \(T \), the temperature, as the run proceeds.
FRAGMENT MONTE CARLO

- Make a library of small fragments of similar sequence.
- Swap in a new fragment by setting six \((\phi, \psi)\) torsion angles.
- Accept move by Monte Carlo and anneal.
KNOWLEDGE-BASED ENERGIES

- Get distribution of distances between pairs of atom centers of a particular type, e.g. D-OD1...F-CD2.

- Normalize and take log to get Energy score:

\[E_{ij}(r) = \log \frac{N_{ij}(r)}{M_{ij}(r)} \]
SEGMENT FOLDING PREDICTION

- Do Monte Carlo moves with respect to (ϕ, ψ) torsion angles. Simulated annealing.

- Use all-atom Knowledge-Based energy function.
 Add terms to enforce compaction.

- Get reasonable (ϕ, ψ) angles from real protein fragments.

- This method does well at CASP4, Asilomar '00.

 T0110 Fit 80 residues to 4.0Å
HARD PROBLEMS
WHY IS FOLDING SO HARD?

• Many different specific interactions.

• Cooperativity of the underlying interactions.

• Three-dimensional with very many possible spatial arrangements.

• Violates Crick’s Law of Hard Problems.
WHY ARE WE GETTING BETTER AT FOLDING?

- Peer pressure (CASP)?
- Faster computers?
- Many more sequences?
- More structures?
INFORMATION + PHYSICS = LIFE

DNA Sequence → RNA Sequence → Protein Sequence → Folded Protein

in silico

Easy: Change T to U

Easy: Triplet Code

Hard: Folding is many body simulation

in vivo

Easy: Folding is free by laws of physics

Hard: Transcription Polymerase

Hard: Translation Ribosome

©Michael Levitt 01
ACKNOWLEDGEMENTS

PEOPLE
- Tanya Raschke
- Erik Sandelin
- Boris Fain
- Patrice Koehl
- Michael Sykes
- Yu Xia
- Rachel Kolodny
- Chen Keasar
- Nizar Batada
- Chris Summa

SUPPORT
- NIH (NIGMS); DOE (SBI); NSF (ITR)

WEB
- http://csb.stanford.edu/levitt
- http://biospace.stanford.edu
- http://dd.stanford.edu
- http://astral.stanford.edu

- Papers
- Lecture
- Thesis
THE END
Historical Record of Best Predictions at CASP

<table>
<thead>
<tr>
<th>CASP & Year</th>
<th>Number of Targets</th>
<th>Best Result</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASP1 1994</td>
<td>6</td>
<td>63</td>
<td>Rost & Sander</td>
</tr>
<tr>
<td>CASP2 1996</td>
<td>24</td>
<td>70</td>
<td>Rost</td>
</tr>
<tr>
<td>CASP3 1998</td>
<td>18</td>
<td>75</td>
<td>Jones</td>
</tr>
<tr>
<td>CASP4 2000</td>
<td>28</td>
<td>80</td>
<td>Jones</td>
</tr>
</tbody>
</table>

- Steady improvement of about 5% per CASP (every two years)

©Michael Levitt 01
NOTES

- PDF files on home page
- Searching www.google.com